Introduction to CVA, DVA & FVA

• John Carpenter, Bank of America
• UNC Charlotte Math Finance Seminar Series
• November 14, 2014
Example Interest Rate Swap Trades

- **Dealer acts as market-maker in 10-year Interest Rate Swaps**
 - Notional $100,000,000 DV01 $91,000. Dealer covers a client flow in inter-bank market.

![Diagram of interest rate swap trades](image)

- **Interest Rates increase 10bps. P&L is maintained but**
 - Dealer now has credit exposure to Client A
 - Competitor has credit exposure to dealer

<table>
<thead>
<tr>
<th>T0: Counterparty</th>
<th>MTM</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client A</td>
<td>$91,000</td>
<td>$91,000</td>
</tr>
<tr>
<td>Competitor</td>
<td>-</td>
<td>$(91,000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T1: Counterparty</th>
<th>MTM</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client A</td>
<td>$910,000</td>
<td>$91,000</td>
</tr>
<tr>
<td>Competitor</td>
<td>$(819,000)</td>
<td>$(91,000)</td>
</tr>
</tbody>
</table>

- **What if Client A defaults?**
- **Exposure not as simple as a pure asset/liability, with a derivative can be +/- and fluid**
Example Interest Rate Swap Trades

- Even without market moves, if forwards are followed, exposure evolves after T0
- Forward profile has expectation that MTM will be non-zero over time

MTM of IRS $100mm 10y

-\$500,000
-\$1,000,000
-\$1,500,000
-\$2,000,000
-\$2,500,000
-\$3,000,000
-\$3,500,000
-\$4,000,000
-\$4,500,000

Credit Support Annex ("CSA")

- Describes collateral arrangement between derivative counterparties
- Counterparty A w/ negative Mark to Market ("MTM") posts cash to Counterparty B
- Counterparty B pays interest on that cash to Counterparty A
- Net credit exposure changes with MTM of underlying derivatives
- Multiple trades are typically netted under a master ISDA
- Interdealer market typically OIS – zero thresholds ("standard CSA")
- Sometime currency optionality (can post EUR or USD)
- Customer trades may not be standard
 - Complete absence (legacy trades)
 - One way (only bank posts, govts, supranationals)
 - Thresholds
 - Rehypothecation
- Not natural for cash management for non-financial customers
- Sovereigns, Munis
- Even perfect CSAs have closeout risk (2 weeks – used in capital models)

- Expected return of the MTM of a cashflow determines discount rate
- Led to transition from LIBOR to OIS discounting
Credit Valuation Adjustment ("CVA") – In the Pricing/Value Sense

- Present value of expected losses on derivative MTM due to counterparty default
- Value of difference between Actual CSA and Standard CSA
- Captures expected cost of hedging counterparties’ default risk
 - Typically exposure hedged at least partially with credit default swaps (CDS)
- If CDS/risky bonds not available, internal spread matrix based on ratings
- Always requires dynamic replication strategy
 - Credit exposure changes as the MTM of the underlying derivative

- Simple approaches are possible for non-banks ("current exposure" methods)
- Banks must use Expected Potential Exposure methods
- FAS 157 – included in earnings
CVA Credit Charge Pricing and Risk

- Simple products become complex
- American option style payout – contingent on credit
- Expected Positive Exposure ("EPE"), PD is default probability
- \(CVA = (1 - Recovery) \int_{t=0}^{T} EPE(t) \times PD(t,t+dt) \, dt \)

- Short an option to your counterparty,
 - Counterparty can walk away from a negative derivative MTM at any future time
 - CVA is present value of that series of options, weighted by probability of c/p default in that interval
- Must be done in a portfolio context – netting sets, Monte Carlo

- These CVA charges change over time based on derivative and credit spreads
- Must be hedged
- Will generate deltas/vegas etc in the underlying risk factors
- Deep in-the money FX option with counterparty with a 50% default probability
- \(PV_{\text{riskfree}} = (FX - K) \times RFDF, \quad PV_\text{risky} = (FX - K) \times RFDF \times 50\% \),
- Risky Foreign currency leg PV is 50% of the Risk Free PV, therefore the risky derivative should be hedged with approx half the notional of the same derivative with a risk-free counterparty (assuming no recovery)
Correlation Adjustment (1)

- Standard Intensity (“hazard rate”) model
- Instantaneous default probability λ.
- Survival probability at time t: $S(t) = e^{-\lambda t}$ or $S(t) = e^{-\int_{u=0}^{u=t} \lambda(u) du}$
- Define Indicator function $\mathbb{1}$ to be 0 if in default, 1 otherwise
- An expected cashflow $V(S)$ from a risky counterparty becomes $E[\mathbb{1} \ast V(S)]$
- Normal approach is to calibrate $\mathbb{1}$ off of CDS prices and discount risky cashflows
- Does not work when value of cashflow $V(S)$ and $\mathbb{1}$ have covariance
- $E[\mathbb{1} \ast V(S)] \neq E[\mathbb{1}] \ast E[V(S)]$ when Cov ($V(S)$, $\mathbb{1}$) $\neq 0$
- Similar to “Quanto Adjustment”

- Substantially affects pricing complexity.
- How do you calibrate correlations?
Correlation Adjustment (2)

• “Right Way Risk”
 – Counterparty’s spreads tighten in same environment when they owe you more money
 – Commodity deriv contract with an oil producer -- client sells calls on oil, buy the puts
 – Bank is owed money on the MTM of derivative when oil is higher (counterparty in good shape)

• “Wrong Way Risk”
 – Counterparty’s spreads widen in same environment when they owe you more money
 – Costs more to buy more protection as derivative increase MTM
 – Cross currency swap receiving USD, paying RUB facing a Russian Bank

• Sometimes not clear whether “right way or wrong way”
 – Idiosyncratic credit event or market event
 – Large economic events disrupt underlying markets and credit risk simultaneously

• Beware of Brownian Motion Diffusion Models, market tends to gap in stress
CVA desk in practice

- Internal CVA desk assumes/manages contingent credit risk
- Natural offsets (one desk positive MTM, another negative to counterparty)
- Centralization of expertise, monitoring, reporting
- Data challenges – CSA terms, legal entities, netting sets, grace periods
- Attempt to hedge counterparty risk (via CDS and Securitization) where possible
- Residual market risk where possible
- Charges derivative trading desk a fee
- Fee then passed to customer
- If counterparty defaults, CVA desk pays derivative desk the MTM of the transaction
- Challenges: Liquidity/Availability of CDS is benign and stressed environment
- Unhedgeable correlation risks
- Need experienced traders, sometimes “right-way” or “wrong-way” not obvious
Capital Requirements for CVA (CVA VaR)

- Volatility of CVA during crisis (realized defaults + MTM volatility from credit spreads)
- Basel III – capital charge on CVA volatility
- CEM and EPE – Standardized or Monte Carlo approach
- Credit hedges “count” against charges but not market hedges
- PFE – based on tails of distribution (95% or 99% confidence interval)
 - Similar to VAR
 - Used for allocating capital, not pricing or risk management
 - Important for monitoring counterparty limits

- Basel “Advanced” Methodology
Industry Shift to Central Clearing

- LCH, CME
- Typically fully collateralized for variation margin with additional high initial margin
- Counterparty risk replaced by clearing house

- Required for many products (IRS, CDS) and counterparties (dealer to dealer)
- Only handles standard conventions
- Some corporates exempt
- Counterparty A w/ negative Mark to Market (“MTM”) posts cash to Clearing House
- CSA with clearing house “standard”, also has “initial amount”
Debit Valuation Adjustment ("DVA")

- Opposite of CVA – reflects risk of own default.
- Symmetrical Pricing (My DVA is your CVA) in theory (net of model diffs)
 - Same credit adjusted prices
 - Risk Free +DVA - CVA
- Structured Notes Under Fair Value Option
- Has perverse dynamic – gains when your credit is deteriorating, losses in improvement
- Tricky to hedge
 - Can’t sell protection on yourself
 - Probably need the funding most when spreads are widening
 - Difficult to buyback debt (tenders, timing)
 - Could sell on peers but difficult in size, increased risk, Volker implications

- Affect earnings, Excluded from Capital
Funding Value Adjustment ("FVA") Defined

- Suppose an uncollateralized trade with a client is hedged with a collateralized street facing trade
- If MTM of hedge becomes negative:
 - Dealer must post collateral to street counterparty,
 - Does not receive collateral from client
- What is the cost to fund that collateral?
 - Collateral will return OIS, but cannot be raised at OIS, raised at average cost of funds
- Implicitly it is a loan to the client (direction could be reversed be a deposit)
- Incremental to CVA because dealer must raise cash and buy default protection on client
- FVA = Adjustment to derivative price which reflects the economic value of funding
- At what price should a dealer trade an uncollateralized derivative with implied funding?
 - Funding costs must be considered, or could end up with a large and expensive funding requirement
- Two different banks will have different prices for the same derivative, depending on funding costs
FVA in theory

- Still widely debated in both academia and industry
- How to separate funding component from expected default component.
- How to combine consistently with CVA/DVA and avoid double counting?
 - Especially difficult with DVA, DVA+FVA should not exceed total spread on debt.
 - Which default occurs first?
- The bank's credit worthiness is a function of the quality of its assets.
- Suppose bank has only one derivative asset, bank's credit should equal counterparty's. The cost of the bank's debt would include CVA=FVA and so counterparty would get double CVA.
- Should corporation's own debt be discounted risk free? The risk free PV of its extra expense over risk free is not NPV on balance sheet?
- Should a risky corporation lend money a less risky counterparty?
- A corporate bond held in a bank's asset portfolio would not have funding risk valued.
- Why is a derivative receivable different?
- Mathematically complex to have unified framework
- Theoretical arguments based on trading in one's own debt -- not practical
 - Tender requirements, blackout, regulatory, liquidity/funding plans
 - Benchmark size, Investor expectations of issuance pattern
FVA in practice

• Some banks have made one-time adjustments for net derivative receivable positions (JP Morgan Q4 2013)

• No prescriptive accounting standard

• How to avoid double counting and price competitively?
• Reducing volatility in earnings (diversifies) DVA
 – Typical FVA position is long receivables from uncollateralized clients
 – DVA typically the reverse (net liability position from structured notes under FVO).
 – Seen in initial disclosures (losses) when FVA switch is “turned on” (e.g., JPM 4q 2013)

• Effective lifetime also important
 – Unwinds and restructuring of client trades

• Portfolio effects – need centralized desk

• How to separate funding from default risk? (bond / cds basis?)
 – CDS illiquidity/volatility makes this of little practical use

• Alignment with Funds Transfer Pricing (static net funding req vs term structure)
• FVA benefit not a stable source of funds or accretive to regulatory metrics
FVA – Counterarguments

• Hull and White (U. of Toronto)
• Their position – FVA should be ignored in pricing/valuations
• Risk free rate is not used because assumption banks can fund at risk free rate
 – Used because risk-neutral valuation requires it
 – RN valuation gives correct value adjusting for hedgeable market risks
• FVA – Asymmetric nature
 - Two banks give different price for same uncollateralized derivative depending on banks funding costs
 - Permits arbitrage
• Should corporation’s own debt be discounted risk free? No.
• Should a risky corporation lend money a less risky counterparty?
 - Analogy, should banks give a loan at a price that reflects clients creditworthiness only?
 - If not then never would lend to a better credit at any rate.
• Is it automatically in the price? FVA is the incremental DVA issued to fund collateral
• Decision to hedge shouldn’t affect valuations.
• Corporate Finance Principle: pricing separate from funding
References and Further Reading

• “The FVA Debate”, Hull and White
• “Is FVA a Cost for Derivatives Desks?”, Hull and White
• “FVA – Putting Funding into the Equation”, KPMG
• “Credit Value Adjustment and Funding Value Adjustment All Together”, Lu and Juan
• “CVA, DVA & Bank Earnings”, Kelly and Pugachevsky
• “The Impact of FVA on swaps: A primer”, Pugachevsky
• “Managing the Complexities of CVA, DVA and FVA”, Pugachevsky
• “The FVA-DVA Puzzle: Risk Management and Collateral Trading Strategies”, Albanese and Iabichino
• “Credit valuation adjustments for derivative contracts”, Ernst & Young
• “Yes, FVA is a Cost for Derivatives Desk”, Castagna
• “Counterparty Risk FAQ:”, Brigo